Algae’s value chain.

Algae cookies

Algae cookies

Algae may be humanity’s best friend. Algae can provide sustainable and affordable food and fuel, as well as ecological and novel solutions. Any food, fibers or materials that can be made from land-based crops can be made from algae because land plants evolved from algae 500 million years ago. Algae offer a much wider array of colors, textures, tastes and compounds than land plants. Any fuels, plastics or other materials made from fossil fuels can be made from algae because fossil fuels are simply fossilized algae or the organisms that ate algae.

The most useful algal attribute is not that we can make just about anything from algae. What sets algae apart from terrestrial plants and fossil fuels is how the algal food, energy and co-products are made. Our atmosphere is overloaded with CO2, which is naturally recycled or sequestered with algae production. Food crops will fail with global warming, but algae flourish in heat. Our world has insufficient cropland for food crops, yet algae can produce supplemental food and energy on non-cropland.

Globally, societies are experiencing a dearth of fresh water, yet algae flourish in waste, brine or ocean water. We have already passed peak oil and algae can provide liquid transportation fuels at a lower cost than mining crude oil. Farmers face a severe shortage of natural resources such as phosphorus that algae can recover, as well as recycle and reuse nutrients from animal and human waste streams.

Algal cultivation can produce valuable biomass using no or minimal fossil resources that compete with land-based food crops, and do not require fertile soils, fresh water, fossil fuels, fertilizers and fossil agricultural chemicals. Co-locating algae production on farms or municipal waste sites enable algae to transform these expensive waste streams from a cost to profit center that provides energy, animal feed and rich organic fertilizer. Co-locating algae production near carbon sources such as power or cement plants or breweries offers potential pollution solutions in addition to biomass production for biofuels and valuable co-products. While algae cleans air and water, the green biomass transforms CO2 and waste nutrients to valuable sugars, proteins, lipids, carbohydrates and other organic compounds.

Our current food and transportation systems are massively pollutive to air, soils and water. Algae can produce carbon neutral food and fuel with a positive ecological footprint. Our current fuels burn giving off dirty black soot particulates, but algae burn cleanly. Algal fuels are made in a few weeks and did not suffer 300 million years undergoing deep and dirty fossilization. Algal fuels burn cleanly because they are essentially vegetable oil.

Algae make fascinating research because according to the leading textbook Algae by James Graham, Lee Wilcox and Linda Graham, 10 million algal species are estimated to exist. Probably 90% of all their special compounds remain to be discovered, described and cultivated. Algae produce far more compounds than found in land plants or animals because there are so many more species of algae than other organisms. Algae benefit from over 3 billion more years of adaption and evolution than land plants and they have created ingenious survival strategies to maximize their growth and vitality and to repel predators.

Algal components are already integrated throughout our food, feed, cosmetics and medicines. A market basket test at Arizona State University found that nearly 70% of products consumers commonly buy at the supermarket contain algal components. Most people do not eat algae directly but enjoy the products made from algal components that include: algal flour in lieu of wheat, corn or soy flour; algal oils that are healthier and less fattening than corn oil, and algal nutrients such as Omega 3s.

Low calorie, delicious algal chocolate will enable consumers to have their cake and eat it without guilt from high calories. In addition to lower fat and higher nutrients than land based foods, research in Russia and Japan suggests that the algae may alter enzyme activity in the liver that controls the metabolism of fatty acids, resulting in lower levels of fat, cholesterol and triglycerides in the blood.

Chocolate Algae Cookie

Algae are uniquely positioned to provide a value chain of products and solutions for critical human needs. The value chain includes sustainable foods, fuels, ecological and novel solutions, represented in Algae’s Green Promise.

Algae’s Green Promise


  • Food. Algae supply high-protein, low-fat, nutritious, healthy and delicious human foods. Algae provide more vitamins, minerals and nutrients than land plants and are a natural health food. Algae do not provide a full solution for malnutrition due to their few calories.
  • Note: Algae’s food value will be suboptimal until solutions are found for a few key issues; making hard cell walls digestible and producing fewer nucleic acids. All other green promises await only macro and micro-scale cultivated algal production systems.
  • Food ingredients. Algae components enhance about 70% of the products in modern supermarkets including dairy products, beer, soft drinks, jams, bakery products, soups, sauces, pie fillings, cakes, frostings, colorings, ulcer remedies, digestive aids, eye drops, dental creams, skin creams and shampoos.
  • Fodder. Algae produce high-protein, low-cost, nutritious animal feed with numerous vitamins, minerals and nutrients. Replacing half the food grains fed to animals sold as U.S. exports would save 20 million acres of cropland and several trillion gallons of fresh water.
  • Local algal production in villages would feed millions of animals and save 20 million acres a year of forests and grasslands from desertification due to animal forage.
  • Fisheries. Algae provide high-protein; low-cost, nutritious fish feed, vitamins and nutrients. Algae can be grown in-situ, in the water with the fin fish and shell fish. Fish tend to grow faster and with more vitality on algae than land grains because fish eat algae in their natural habitat.


  • Fuels – biodiesel. Algal oils pressed directly from algal biomass produce renewable and sustainable, high energy biofuel from sunshine, C02 and wastewater. Replacing U.S. ethanol production would take 2 million acres of desert, half of one Arizona county. Replacing corn with algae as a biofuel feedstock would save each year 40 million acres of cropland, 2 trillion gallons of water, 240 million tons of soil erosion and extensive water pollution.
  • Fuels – jet fuel, ethanol and hydrogen. Algae can produce a variety of high energy liquid transportation fuels including gasoline. While refining generally requires more energy input than squeezing out algal oil, the U.S. is likely to have a surplus of ethanol refinery capacity. Algae can be refined in fossil fuel refineries into the same products made from fossil fuels because fossil fuels are simply fossilized algae. Several companies including Sapphire Energy have announced that their algal biofuel production models deliver a drop-in gasoline.
  • Fossil fuels. Replacing U.S. ethanol production also would save 7 billion gallons of fossil fuel used to produce ethanol. Moving 1/10th of U.S. agricultural production from dirty diesel to clean algal-diesel would clean the environment and save 20 billion gallons of fossil fuels annually. Even larger fossil fuel savings would accrue from using algal oils to substitute for a portion of the diesel used by trucks, trains, ships and planes.
  • Fire – cooking. Black smoke from cooking fires and heating with wood, weeds and dung causes smoke death for 1.6 million and disability for 10 million mostly women and children every year. Clean-burning, high energy algal-oil can end smoke death and the many smoke disabilities. Substituting algal oil for wood, dung and agricultural materials will save a tremendous amount of labor from gathering firewood and allow forests to be replanted.

Ecological Solutions

  • Fresh water. Running wastewater through algaculture feeds the plants and cleans the water. Producing fuel, fodder or fertilizer using wastewater or brine water saves water that would otherwise be used for land-based crops. Replacing half of U.S. food exports with algaculture foods would save 30 million acres of cropland, 2 trillion gallons of water and 5 billion gallons of fossil fuel.
  • Fresh air. Flueing smoke stack gasses through algaculture removes CO2, nitric oxides, sulfur and heavy metals such as mercury from power plant or industrial plants, sequesters greenhouse gasses and cleans the air. Algae represent only a partial solution since the plant only grows with sunshine and power plants operate 24 hours a day. Some producers have reported success with grow lights for night production.
  • Fertilizer. Nitrogen-fixing algae may provide high nitrogen fertilizers at very low cost in both production and energy inputs. The product is natural, supports organic food production and can provide cheap local fertilizer to subsistence farmers globally. The algal ash retains fertilizer value after being burned in cooking fires.
  • Forests. High energy algal-oil fuel can end the need to denude forests and grasslands for cooking and heating fuel. Villagers may replant their forests with nut trees or legumes for food to offset the low calories provided by algal foods.

Novel Solutions

  • Fabrics. Algal carbohydrates are similar to wood and may be made into textiles, paper and building materials. Algal paper and building materials save forests. Fabrics save cropland for food crops and provide warmth. Algae may be made into biodegradable plastics, biofuels or other refined products.
  • Foreign Aid. American foreign aid provides subsidized U.S. food, undermines or destroys local food production because farmers cannot compete with U.S. subsidized food. Gifting food fails to address the root cause of hunger and poverty – local control over food resources and community engagement. Algaculture foreign aid would transfer knowledge and some start-up materials to grow algal foods, fuels, fodder, fertilizer and medicines locally.
  • Famine and disaster relief. Algae, with its rich set of vitamins and minerals, activates the immune system and wards off starvation while providing fuel, fodder, fabrics, fertilizers and fine medicines. Disaster relief with local algaculture production may prevent community starvation for millions. Local algal production solves the critical problem of food distribution.
  • Fine medicines. High-quality, affordable medicines, vaccines and pharmaceuticals may be made from algal co-products or grown in algae bioengineered to produce advanced compounds such as antibiotics, vitamins, nutraceuticals and vaccines. These compounds are grown today in land plants and animals so algae offer significantly faster and lower cost production.
  • Designer algae grown locally in villages could save millions of lives by providing low cost vaccines or other medicines that need no packaging or distribution. Fine medicines, especially personalized drugs tailored to an individual, may offer more value than all other algal co-products combined.

Nature’s first food production system on Earth, algaculture, offers extraordinary benefits. Solutions to commercial and small-scale growing systems will ignite a green gold rush to produce high-value and affordable food, fuels, fodder, fertilizers and medicines from algae.

Algal food products can create an abundance of food and energy while reducing demand for food products that require extensive cropland, fresh water, fertilizers and fossil fuels. Food production that adds only oxygen to the atmosphere and does not pollute local ecosystems will provide a very positive net yield to the environment.

Mark Edwards,
Adapted from: Green Solar Gardens: Algae’s Promise to end Hunger, 2009.